Power Performance Reliability Co-Design: 3D IC Case Study

A. Srivastava
Dept. of ECE and Institute for
Systems Research
University of Maryland

Overarching Agenda: Co-Simulation and Co-Modeling Driven Co-Design of Computing Systems

Runtime CoDesign

- Online model building from chip/board level sensors
- 2. Feedback control based management of HW/SW knobs

Design Time CoDesign

- 1. Application
- 2. Architecture
- 3. System
- 4. Devices
- 5. Packaging
- 6. Cooling

Computational Design

Cosmos

Electrical/Logical Design

Physical Design

How do we do Co-Design? (weighted?) Co-Design Graph (Sub-Application

Level)

3D ICs

System Throughput

3D eliminates low-bandwidth off-chip links that stall benefits of processor throughput Enables high-throughput architectures

System Power

Reduces system capacitance, losses, and power in signaling: on-chip wires=50-70% total chip capacitanc Today's off-chip links: 10-35 mW/Gbps 3D: <1 mW/Gbps

Heterogeneous Integration

Provide monolithic like performance for photonics, MEMS, sensors, non-volatile memory, etc with CMOS

System Form-factor, Cost, Yield, and Density Reduce chip size, which improves yield and cost Provides a new way to increase device density

3D IC Thermal & Reliability Challenge

- 1. Sizable increase in the number of power dissipating devices. Typical logic over logic 3D IC solutions could dissipate > 300W of power. [Bar-Cohen et. al. IEEE Proc 2006]
- 2. Overlapped hotspots
- 3. Higher thermal resistance to the heat sink due to increased number of layers
- 4. Susceptible to new types of reliability failure mechanisms in TSVs.
 - 1. Electromigration
 - 2. Thermal Cycling and Stress Induced Cracks

TSV Stress Profile

PPR Co-Simulation and Co-Modeling

- Conventional cooling approaches follow a post-fix method.
- The electrical, thermal, fluidic and mechanical aspects of the system are interdependent.
 - Postfix based design of the fluidic/cooling aspect of the system undermines this interdependence and misses opportunities for optimization

Design Space Simulation Environment

- Given a 3D CPU architectural solution space:
 - \neg num cores = {16, 32, 64}
 - num $MC = num_cores/\{8, 4, 2\}$
 - clock frequency = {2.4, 3.0, 3.6} GHz
- We identify the architecture with the highest performance subject to:
 - Timing/wirelength constraint: (slack > 0)
 - Thermal constraint (temp < 85 C)
 - Reliability Constraint (reliability > 99%)

Statistical Reliability Model for TSV

$$\frac{\partial c}{\partial t} + \nabla \cdot \vec{q} = 0$$

$$\vec{q} = -D\nabla c + \frac{Dc\vec{j}e\rho Z}{kT} + \frac{Dc\Omega}{kT} \cdot (\nabla \sigma_m) + \frac{DcQ^*}{kT} \cdot \frac{\nabla(T)}{T}$$

c: Atomic concentration

j: Current density

T: Temperature

 σ : Thermal stress Others: constants

Each Weibull distribution is determined by a shape parameter k (assumed to be a constant) and a scale parameter λ .

$$\lambda \propto MTTF_{EM} \propto \left(J_{avg}\right)^{-2} e^{\frac{E_a}{kT}}$$

 J_{avg} is the equivalent DC current of an AC signal, which depends on voltage, frequency, and TSV activity.

Statistical Reliability Model

Grid-level TSV failure PDF

 P_{EM}^{i} = Prob of i-th TSV failing in 3 years

Scatter Plots of Thermally Feasible Architectures

Air Cooled Reliability Unaware (99% Reliability Constraint)

	#cores	#MC	Freq	Power	MaxT	IPnS	Energy Efficienc y
barnes	16	8	3.6	110	74.5	36.9	12.4
blackscholes	16	8	3.6	102	78.5	27.1	7.2
bodytrack	16	8	3.6	110	74.4	35.9	11.7
dedup	16	8	3.6	109	75.5	27.9	7.1
fft	16	8	3.6	115	75.5	32.3	9.1
fluidanimate	16	8	3.6	133	77.0	46.1	16.0
ocean	32	16	3.0	172	78.8	15.0	1.3
radix	16	8	3.6	113	75.1	38.5	13.1
swaptions	16	8	3.6	118	75.5	44.1	16.5
water-nsquared	16	8	3.6	147	81.7	72.6	35.9
water-spatial	16	4	3.0	106	83.4	80.1	60.4
avg	1.00x	1.00x	1.00x	1.00x	1.00x	1.00x	1.00x

MF Cooled Reliability Aware (99% Reliability Constraint)

	#cores	#MC	Freq	Power	MaxT	IPnS	Energy Efficiency
barnes	#cores	16	3.6	376	84	103.1	28.3
blackscholes	64	8	3.6	258	72	50.2	9.8
bodytrack	64	16	3.6	337	79	53.8	8.6
dedup	32	16	3.6	246	66	52.0	11.0
fft	32	16	3.6	255	67	59.6	13.9
fluidanimate	32	16	3.6	277	71	84.6	25.8
ocean	32	16	3.6	209	62	17.6	1.5
radix	64	16	3.6	347	80	49.4	7.1
swaptions	32	16	3.6	253	68	76.7	23.2
water-nsquared	32	16	3.6	297	73	122.6	50.6
water-spatial	64	8	3.0	300	71	187.5	117.1
avg	2.57x	1.76x	1.02x	2.36x	0.93x	1.76x	1.32x

On-Going Work

- 1. The TSV reliability model is purely statistical. Refinements driven from multiphysics.
- 2. Other Reliability Loss Models (PG Noise, Stress etc.)
- Correlations in signal activity imply correlations in reliability degradation.
- 4. Architectural parameters are still exhaustively searched.
 - Need an adaptive model building based approach where the arch. solution space is modeled by fitting the data from a few simulations. The model is used to predict the optimal solution.
 - 2. Preliminary data illustrated below.

Acknowledgements

- This work has been funded by:
 - NSF GrantCCF1302375

DARPA ICECOOL